Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2-Amino-4,6-dimethoxy-5-nitroso-pyrimidine-water (4/3): seven independent molecular components are linked into a three-dimensional framework by six three-centre and eight two-centre hydrogen bonds

Christopher Glidewell, ${ }^{\mathbf{a} *}$ John N. Low, ${ }^{\mathbf{b}} \boldsymbol{\dagger}$ Antonio Marchal, ${ }^{c}$ Manuel Melguizo ${ }^{c}$ and Antonio Quesada ${ }^{\text {d }} \ddagger$
${ }^{\text {a School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, }}$ Scotland, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\text {co }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\text {d School of Engineering, }}$ University of Dundee, Dundee DD1 4HN, Scotland
Correspondence e-mail: cg@st-andrews.ac.uk

Received 19 September 2002
Accepted 23 September 2002
Online 22 October 2002
In the title compound, $4 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the pyrimidine molecules all exhibit a polarized molecular electronic structure; the seven-component asymmetric unit can be selected as a closed cyclic aggregate and the linking of these aggregates can be analysed in terms of translational chain motifs running parallel to [110], [210] and [011], which combine to generate a single three-dimensional framework.

Comment

In 2-amino-4,6-dimethoxypyrimidine, (I), both $\mathrm{N}-\mathrm{H}$ bonds are involved in the formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, so forming a chain of edge-fused rings containing two distinct $R_{2}^{2}(8)$ motifs (Low et al., 2002). The benzyloxy analogue, 2-amino-4,6-bis(benzyloxy)pyrimidine, (II), on the other hand, utilizes only one of the $\mathrm{N}-\mathrm{H}$ bonds in forming an $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, again forming an $R_{2}^{2}(8)$ motif, while the other $\mathrm{N}-\mathrm{H}$ bond forms an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond which generates a simple $C(6)$ chain motif; the combination of the ring and chain motifs generates a molecular ladder (Quesada, Marchal et al., 2002). There are no $R_{2}^{2}(8)$ rings in 2-amino-4,6-bis(benzyloxy)-5-nitrosopyrimidine, (III), the nitrosated analogue of (II) (Quesada, Low et al., 2002). Instead, one NH bond participates in a three-centre $\mathrm{N}-\mathrm{H} \cdots(\mathrm{N}, \mathrm{O})$ hydrogen bond, while the other forms an $\mathrm{N}-\mathrm{H} \cdots \pi$ (arene) hydrogen bond; the overall supramolecular structure is again one-

[^0]dimensional. Thus, the supramolecular structures of (I)-(III) involve two, one or zero distinct $R_{2}^{2}(8)$ rings, respectively, containing paired $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Intrigued by the differences in structural behaviour, not only between (I) and (II), but also between (II) and (III), we have now investigated the nitrosated analogue of (I), namely 2 -amino-4,6-di-methoxy-5-nitrosopyrimidine, which upon crystallization from acetone, as used for (I) and (III), yields the stoichiometric hydrate $4 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (IV).

(I)

(III)

(II)

(IV)

(IVa)

Compound (IV) (Fig. 1) crystallizes in the non-centrosymmetric triclinic space group $P 1$, with four pyrimidine molecules and three water molecules in the asymmetric unit. Each of the pyrimidine molecules adopts a conformation in which the two methyl C atoms are essentially in the plane of the ring, but directed away from the nitroso substituent, just as in (III) (Quesada, Low et al., 2002). In each of the pyrimidine molecules in (IV), the $\mathrm{N} n 1-\mathrm{C} n 6$ and $\mathrm{N} n 3-\mathrm{C} n 4$ bonds ($n=1-4$) are short for their type (Allen et al., 1987) and the Cn2-Nn2 bonds are much shorter than both the $\mathrm{N} n 1-\mathrm{C} n 2$ and $\mathrm{C} n 2-$ $\mathrm{N} n 3$ bonds (Table 1); in addition, the $\mathrm{C} n 5-\mathrm{N} n 5$ bonds are shorter and the $\mathrm{N} n 5-\mathrm{O} n 5$ bonds longer than the corresponding bonds in simple unpolarized aryl-nitroso compounds. All of these distances point to the charge-separated form (IVa) as an important contributor to the overall molecular-electronic structure.

The seven independent molecular components in (IV) are linked into a three-dimensional framework by a combination of six three-centre hydrogen bonds, of which four are of the $\mathrm{O}-\mathrm{H} \cdots(\mathrm{O})_{2}$ type and one each are of the $\mathrm{O}-\mathrm{H} \cdots(\mathrm{N}, \mathrm{O})$ and $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O})_{2}$ types, and eight two-centre hydrogen bonds, one each of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ types and six of the $\mathrm{N}-$ H…O type (Table 2). The three-centre systems are, in general, distinctly asymmetric, but most are nearly planar;

Figure 1
The independent molecular components of (IV), showing the atomlabelling scheme and the linking of the independent components into the cyclic asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, only those hydrogen bonds which generate the outer $R_{7}^{7}(38)$ ring are shown.
their angle sums at the H atoms range from 340 to 359°, with a mean value of 351°. The $D-\mathrm{H} \cdots A$ angles in the two-centre hydrogen bonds range from 149 to 177°, with a mean of 168°, and all are reasonably short, and thus reasonably strong, for their types.

In supramolecular systems such as this, the selection of the asymmetric unit is, to a large extent, arbitrary; however, in (IV), it is possible to select a compact cyclic asymmetric unit bounded by an $R_{7}^{7}(38)$ motif (Fig. 1) which incorporates three of the three-centre hydrogen bonds and five of the two-centre hydrogen bonds, leaving just six hydrogen bonds to link these

Figure 2
Part of the crystal structure of (IV), showing the formation of a chain along [110]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $(1+x, 1+y, z)$ and $(-1+x,-1+y, z)$, respectively.
cyclic aggregates into the continuous framework. The interior of this cyclic unit is occupied by four methoxy groups, one from each of the pyrimidine molecules. Because translation is the only symmetry operation available in $P 1$, the formation of the framework itself can be readily analysed in terms of just three chain motifs linking the cyclic aggregates.

In the simplest of these chain motifs, the O1 water molecule in the aggregate at (x, y, z) acts as hydrogen-bond donor, via H 11 , to water atom O 3 at $(1+x, 1+y, z)$, so generating a chain parallel to the [110] direction (Fig. 2). The second chain motif utilizes two different three-centre hydrogen bonds with which to link the cyclic aggregates; the O 2 water molecule acts as hydrogen-bond donor, via H 21 , to both methoxy atom O 36 and nitroso atom O35 in the pyrimidine molecule at $(x, 1+y$, $1+z$), while the N 42 amino group acts as donor, via $\mathrm{H} 42 B$, to methoxy atom O 16 and nitroso atom O 15 at $(x,-1+y$, $-1+z$), and these three-centre interactions combine to generate a chain running parallel to [011] (Fig. 3). Finally, in the most complex of the chains, the N12 amino group acts as donor, via $\mathrm{H} 12 A$, to nitroso atom N 25 at $(2+x, 1+y, z)$, while the N32 amino group acts as donor, via H32A, to methoxy atom O 44 at $(-2+x,-1+y, z)$, each hydrogen bond thus forming a chain along [210]; additionally, the O3 water molecule acts as donor, via H32, to both N45 and O45 at ($-2+x$, $-1+y, z$), providing the final component of the [210] chain (Fig. 3). The combination of the [011] and [210] ladders generates a very elegant (12 $\overline{2}$) sheet (Fig. 3), while the com-

Figure 3
Part of the crystal structure of (IV), showing the formation of ladders along [011] and [210] and their combination to form a (12 $\overline{2})$ sheet. Atoms marked with an asterisk (*), hash (\#), dollar sign (\$) or ampersand (\&) are at the symmetry positions $(x,-1+y,-1+z),(x, 1+y, 1+z)$, $(-2+x,-1+y, z)$ and $(2+x, 1+y, z)$, respectively.
bination of [110], [011] and [210] chains suffices to generate a single three-dimensional framework.

Experimental

A sample of (I) was purchased from Aldrich and converted to 2-am-ino-4,6-dimethoxy-5-nitrosopyrimidine according to the method of Marchal et al. (2002). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone.

Crystal data

$4 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=790.70$	$D_{x}=1.563 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P 1$	Mo $K \alpha$ radiation
$a=6.9588(4) \AA$	Cell parameters from 6738
$b=7.1984(4) \AA$	reflections
$c=17.4239(11) \AA$	$\theta=2.9-27.4^{\circ}$
$\alpha=101.181(2)^{\circ}$	$\mu=0.13 \mathrm{~mm}^{-1}$
$\beta=98.559(2)^{\circ}$	$T=120(1) \mathrm{K}$
$\gamma=95.360(4)^{\circ}$	Plate, blue
$V=839.95(9) \AA^{3}$	$0.20 \times 0.20 \times 0.04 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997) $T_{\text {min }}=0.964, T_{\text {max }}=0.992$
10707 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.140$
$S=1.00$
3638 reflections
504 parameters

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H12 . . O 45	1.00	2.00	2.957 (5)	159
O1-H12 . O 46	1.00	2.35	2.977 (5)	120
N42-H42A \cdots O35	0.88	2.13	3.011 (6)	177
N32-H32B . . O3	0.88	2.12	2.962 (6)	161
O3-H31 \cdots O25	1.00	2.04	2.941 (5)	149
O3-H31 \cdots O26	1.00	2.12	2.882 (5)	132
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{O} 14$	0.88	2.31	3.183 (6)	172
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 2$	0.88	2.00	2.855 (6)	165
O2-H22 . O 15	1.00	1.73	2.719 (6)	171
$\mathrm{O} 2-\mathrm{H} 22 \cdots \mathrm{~N} 15$	1.00	2.23	3.090 (6)	143
N12-H12B \cdots O1	0.88	1.95	2.825 (6)	177
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{O} 3^{\text {i }}$	1.00	1.82	2.817 (5)	170
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 36^{\text {ii }}$	1.00	2.08	2.834 (5)	131
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 35^{\text {ii }}$	1.00	2.16	2.951 (5)	135
$\mathrm{N} 42-\mathrm{H} 42 \mathrm{~B} \cdots \mathrm{O} 15^{\text {iiii }}$	0.88	2.43	2.991 (6)	122
$\mathrm{N} 42-\mathrm{H} 42 \mathrm{~B} \cdots \mathrm{O} 16^{\text {iii }}$	0.88	2.46	3.337 (6)	173
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{~N} 25^{\text {iv }}$	0.88	2.24	3.027 (6)	149
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{O} 45^{\text {v }}$	1.00	1.78	2.767 (5)	168
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{~N} 45^{\text {v }}$	1.00	2.32	3.145 (6)	139
$\mathrm{N} 32-\mathrm{H} 32 \mathrm{~A} \cdots \mathrm{O} 44^{\text {v }}$	0.88	2.23	3.108 (6)	175

Symmetry codes: (i) $1+x, 1+y, z$; (ii) $x, 1+y, 1+z$; (iii) $x, y-1, z-1$; (iv) $2+x, 1+y, z ;(\mathrm{v}) x-2, y-1, z$.
equivalents were merged; the absolute structure could not be established.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1591). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. \& Glidewell, C. (2002). Acta Cryst. C58, o289-o294.

Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A. \& Low, J. N. (2002). Synlett, pp. 255-258.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Quesada, A., Low, J. N., Melguizo, M., Nogueras, M. \& Glidewell, C. (2002). Acta Cryst. C58, o355-o358.
Quesada, A., Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A., Low, J. N., Cannon, D., Farrell, D. M. M. \& Glidewell, C. (2002). Acta Cryst. B58, 300315.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Version of June 2002. University of Utrecht, The Netherlands.

[^0]: \dagger Postal address: School of Engineering, University of Dundee, Dundee DD1 4HN, Scotland.
 \ddagger On leave from: Departamento de Química, Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain.

